Curiosity, Courage, Compassion

 'A community learning together in God's love'
Thundridge and Tonwell St Mary's Church Schools' Federation

Calculations Policy (Tonwell St Mary's)

Date updated: February 2021
Review Date: September 2023

Written Calculation Progression

At Tonwell St Mary's, we have chosen to adopt the Herts for Learning (HfL)
ESSENTIALmaths pathway as outlined in our maths intent document. This policy aims to illustrate our school's approach to teaching calculations and is linked to the required written formal calculation methods as outlined in the National Curriculum (2013)
Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division.

The HfL ESSENTIALmaths Written Calculation Progression links the key concrete experiences with pictorial and abstract representations (written symbolic and spoken). This supports pupils to move with confidence and deep conceptual understanding through each strand of calculation.

Concrete, Pictorial and Abstract

Concrete manipulatives

Concrete manipulatives are objects that can be touched and moved by pupils to introduce, explore or reinforce a mathematical concept. They provide a vehicle to help pupils make sense of complex, symbolic and abstract ideas through exploration and manipulation. Furthermore, they support the development of internal models and help build stronger memory pathways.

Pictorial (including jottings)

The act of translating the concrete experience into a pictorial representation helps focus attention on what has happened and why. This supports deeper understanding and a stronger imprint on memory. Pictorial representations are more malleable than concrete resources and, once understanding is secured, allow exploration of complex problems that may be challenging to reproduce with manipulatives.

Abstract - Written

The aim, within this policy, is for compacted forms of notation. These have developed through the history of mathematics. Explicit individual steps in procedure are hidden or they have been shortcut. The informal and expanded methods expose all the intermediate steps, replicating thought processes more closely and support understanding prior to compaction.

Abstract - Spoken

Learning to use the correct mathematical vocabulary is vital for the development of mathematical proficiency. The ability to articulate accurately allows pupils to communicate and build meaning. Ideas become more permanent. This can be scaffolded effectively using speaking frame.

First, I need to consider the ones in the multiplier.
... groups of ... ones is ones. (Do I need to regroup?)
... groups of ... tens is tens. (Do I need to regroup?)
Then, considering tens in the multiplier.
... groups of ... ones is
ones. (Do I need to regroup?)
... groups of ... tens is tens. (Do I need to regroup?)
The total of all the partial products is
The product of \ldots and \ldots is \qquad

Notes:

Speaking frame hint: linking to what we know and correct place value.
For example, 10 groups of 3 tens is 30 tens (linking to known fact 10×3). This can be regrouped to 3 hundreds.

These additional examples show only jottings, completed speaking frames and abstract recording. This complexity of calculation should only be introduced to pupils once they are confident in the conceptual pathway and can explain the abstract recording with reference to the concrete and pictorial models.

Additional Year 6 examples \quadYe Statement: Year 6Divide numbers up to 4 d division and interpret rem for the context	NC Statement: Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context		
6LS17 Step 4: Long division for numbers up to 4 digits - expressing quotients with fractions			
Abstract speaking frame I have a remainder of 9 . This is 9 out of the 15 which I need for another group. This can be written as a fraction $\frac{9}{15}$. This can be simplified to $\frac{3}{5}$. There are $37 \frac{3}{5}$ in each of the 15 groups.	Pictorial - Jottings Jottings: multiples of the divisor 15 30 45 60 75 90 105 120 135 150	Abstract - Written symbolic - 0 5 6 - 4 5 \downarrow 1 1 4 - 1 0 5$\frac{9}{15}=\frac{3}{5}$$564 \div 15=37 \frac{3}{5}$	

$\left.\begin{array}{|c|l|l|l|}\hline \text { Additional Year } 6 \text { examples } & \text { NC Statement: } \\ \text { Year } 6 \\ \text { Divide numbers up to } 4 \text { digits by a two-digit whole number using the formal written method of long } \\ \text { division and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate } \\ \text { for the context }\end{array}\right]$

Additional Year 6 examples NC Statement: Year 6 Multiply multi-digit numbers of up of long multiplication	NC Statement: Multiply multi-digit numbers of up to 4-digits by a two-digit whole number using the formal written method of long multiplication	
6LS12 Step 3: Long multiplication; up to 4-digit by 2-digit		
Abstract speaking frame First, I need to consider the ones in the multiplier. 7 groups of 6 ones is 42 ones. I need to regroup into 4 tens and 2 ones. 7 groups of 3 tens is 21 tens. I need to add the regrouped 4 tens. I now have 25 tens. I need to regroup into 2 hundreds and 5 tens. 7 groups of 8 hundreds is 56 hundreds. I need to add the regrouped 2 hundreds. I now have 58 hundreds. I can regroup this into 5 thousands and 8 hundreds. Then, considering the tens in the multiplier. 20 groups of 6 ones is 120 ones. I need to regroup into 1 hundred and 2 tens. 20 groups of 3 tens is 6 hundreds. I need to add the regrouped 1 hundred. I now have 7 hundreds. 20 groups of 8 hundred is 16 thousand. There are no regroups to add. The total of the two partial products is $22,572$. The product of 836 and 27 is 22,572 .	Pictorial - Jottings Jottings: multiples of tricky multipliers 7 14 21 28 35 42 49 56 63 70 77 84	Abstract - Written symbolic $\begin{array}{r} 2 \frac{1}{4} \\ 836 \\ \times \quad 27 \\ \hline 5852 \\ 16720 \\ \hline 22572 \\ \hline 11 \end{array}$ $836 \times 27=22,572$

